

LIFE Climate CAKE PL

CO₂ Emissions reduction potential in transport sector in Poland and in the EU until 2050

Conference: "Challenges of the economic transformation in the perspective of achieving the climate neutrality by 2050"

Warsaw, 22nd of November 2019

TR³E MODEL - BRIEF DESCRITPION

TR³E MODEL - TRANSPORT EUROPEAN EMISSION ECONOMIC MODEL

- Methodology:
- Geographical coverage: EU-28 Member States
- Time horizon:
- Subsectors:
- Type of activity:
- Passenger module:
- Age structure of stock: up to 30 years old
- Market development:
- Fuels in **TR³E** model:

dynamic recursive partial equillibrium model

- road, rail, aviation and water transport
- passenger / freight modules

2050 in annual steps

- work /non work trips, urban /non urban trips
- t: new vehicles and technologies (ex. ZLEVs)
- el: diesel, petrol, CNG, LPG, hybrid and electric

MAIN ASSUMPTIONS- BASELINE SCENARIO

- Activity growth is consistent with the EU Reference Scenario 2016
- Vehicles prices are constant up to 2050
- International fuel prices are consistent with WEO 2017 (3-times growth in 2050)
- Dynamics for electricity prices are taken from MEESA energy model, and it is assumed two times growth up to 2050
- Average mileage growth for PL from +0.5% to +2% y/y
- Constant occupancy rates 1.4 person/vehicle for cars in average in the PL
- Constant load factor (LDV 180kg, HDV, aviation, rail and coastal)
- Emission intensities decline at the same level as in the EU Reference Scenario

MAIN ASSUMPTIONS- ANALITICAL SCENARIOS

D Technology progres scenario (Low, Moderate, High):

- Electric vehicles prices (cars and LDV's) and hybrid decline 1% annualy comparing to the baseline scenario;
- Growth of costs for users in case of aviation (1% annually) and decline of this costs for train transport (0.25% annually) in purpose of CO2 emissions reductions in aviation and promotion of rail transport;
- Faster emissivity improvement (by 0.5% annually) comparing to the baseline scenario.

• Forced electromobility scenario:

- Growing share of electric vehicles in new sales is assumed, as well as the ban for new ICE vehicles registration from 2045 (share of hybrids is as the level of 15%);
- Comparing to technology progres scenario, changes in new vehicles share are due to regulatory constraint and not as an effect of price change;
- Same growth of costs for users in case of aviation like in the technology progress scenario.

IOŚ-PIB

KOBIZE

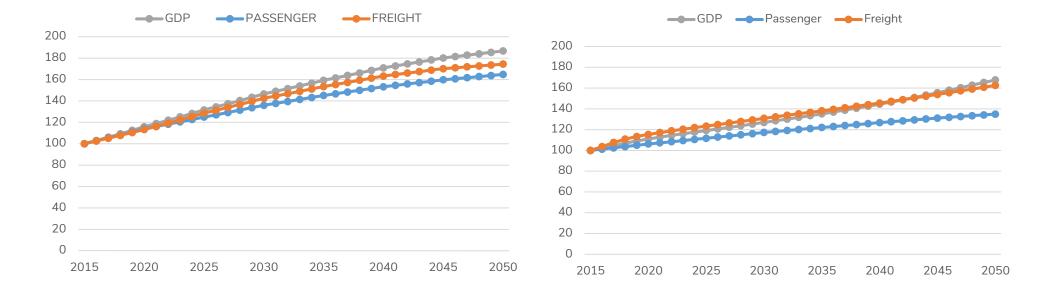
 $\mathbf{\widehat{T}}$

IOŚ-PIB

ANALITICAL SCENARIOS- PL

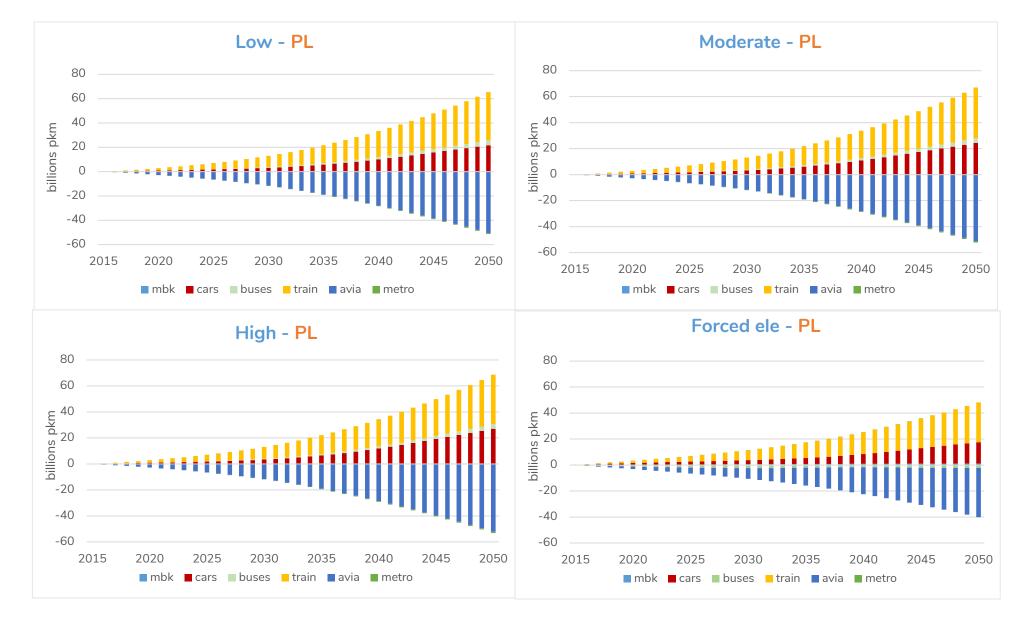
	Baseline	Low	Moderate	High	Forced electromobility	
% of electric cars in 2050	24%	39%	47%	57%	80%	
% of electric LDV`s in 2050	25%	40%	46%	54%	96%	
CO ₂ reduction – cars (2050/2015)	-44%	-62%	-68%	-74%	-90%	
CO ₂ reduction - LDVs (2050/2015)	+35%	-7%	-14%	-24%	-92%	
CO ₂ reduction - total (2050/2015)	-4%	-36%	-40%	-45%	-66%	
CO ₂ emissions in 2050 (Mt)	47.5	30.5	28.5	26.0	16.2	

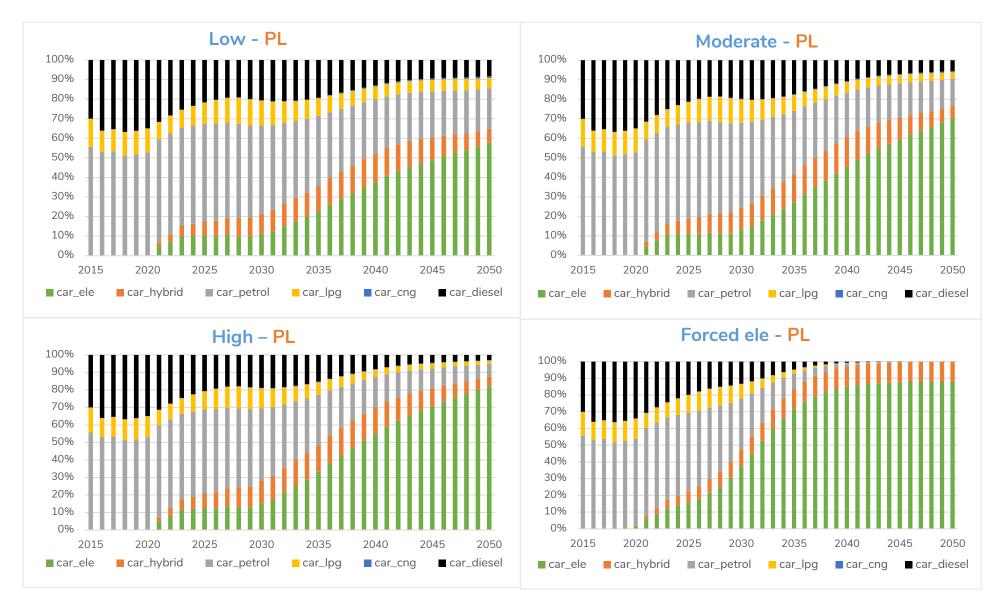
Source: CAKE/KOBiZE own presentation


TRANSPORT ACTIVITY

EU

- Activity in passenger transport is growing slower than the GDP; up to 2050 we assume 60% growth in PL (1.4% y/y) and almost 40% in the EU (0.9% y/y);
- In case of the EU, activity in freight transport grows at the same level as GDP (1.4% y/y); In case of PL this growth is at 1.6% y/y;
- Activity growth is consistent with the PRIMES Reference Scenario


MODELING RESULTS


ACTIVITY CHANGES-PL

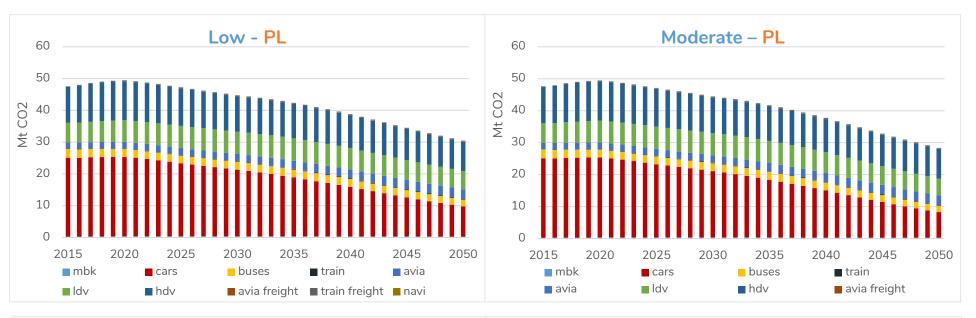
NEW CARS FLEET STRUCTURE- PL

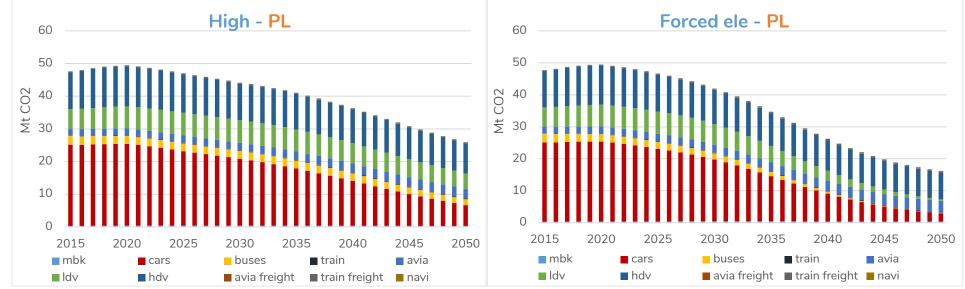
NUMBER OF ELECTRIC PASSENGER CARS - PL

- Even in the baseline, the number of EV in 2030 is higher than 1.5 mln, due to low average mileage, derived from the IDEES database;
- Significant diferreneces between the baseline and analitical scenarios are visible after 2025, when new vehicles price becomes an important factor for growing market sales;
- Fast growth of EV's is visible only in forced electromobility scenario.

DEMAND ON ELECTRICITY - PL

KOBIZE



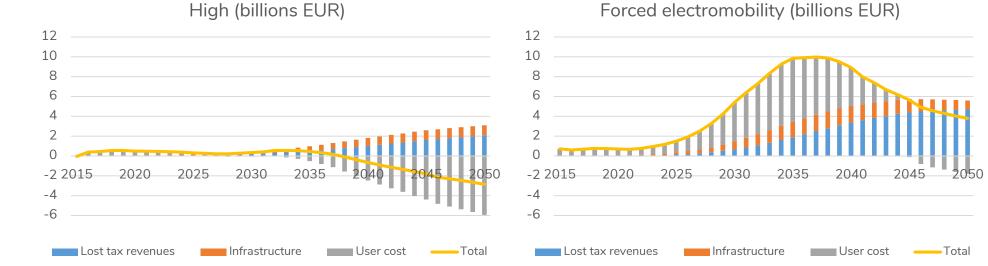

KOBIZE

 $\widehat{\mathbf{f}}$

IOŚ-PIB

CO₂ EMISSIONS BY MEAN OF TRANSPORT - PL

COSTS (PROFITS) FOR THE ECONOMY AND FOR THE USERS



COSTS - SUMMARY

	Cumulated costs/profits (2020-2050) (billions EUR)				Average (yearly) (2020-2050) (billions EUR)			
Scenario →	Low	Mod.	High	FE ^{a)}	Low	Mod.	High	FE ^{a)}
Consumer Costs(-)/profits (+)	34.8	43.5	52.4	- 70.8	1.2	1.4	1.7	-2.4
Infrastructure Costs	-7.8	-11.6	-16.0	-30.9	-0.3	-0.4	-0.5	-1.0
State budget revenues (+) /loses (-)	-8.9	-15.3	-22.8	-66.0	-0.3	-0.5	-0.8	-2.2
Total	18.1	16.6	13.6	-167.6	0.6	0.6	0.5	-5.6

Cumulated and average costs/profits overview for Poland for the period 2020-2050 (billions EUR)

^{a)} FE – Forced electromobility scenario

KOBIZE

MAIN CONCLUSIONS

- Deep CO₂ emissions reduction in the transport sector is difficult but possible and need in the same time:
 - Limitation of aviation activity or important emissions intensity improvment
 - Dynamic growth of EV's sales (including electric HDV's).
- These targets can be acheived togehter with significant EV price fall and infrastructure development. As well they can be forced by leguratory changes (case of forced electromibility scenario);
- In the scenarios with fast EV prices fall, costs are beard with the vehicle purchase, then they are balanced by fuel gains. In forced electromobility scenario these spendings are higher, and gains occurs relatively later.

Thank you for your attention!

Wojciech Rabiega, Przemysław Sikora, Jan Gąska

LIFE Climate CAKE PL Team

The National Centre for Emissions Management (KOBiZE)/ Institute of Environmental Protection – National Research Institute (IOS-PIB)

e-mail: <u>cake@kobize.pl</u>

www.climatecake.pl

Project LIFE16 GIC/PL/000031 is co-financed from EU funds from the LIFE program and from the funds of the National Fund for Environmental Protection and Water Management.